OBSERVATIONS & RECOMMENDATIONS

After reviewing data collected from **COLE POND**, **ANDOVER**, the program coordinators have made the following observations and recommendations:

We would like to thank your group for sampling your pond **once** this summer. However, we encourage your monitoring group to sample **additional** times each summer. Typically we recommend that monitoring groups sample **three times** per summer (once in **June**, **July**, and **August**). We understand that the number of sampling events you decide to conduct per summer will depend upon volunteer availability, and your monitoring group's water monitoring goals and funding availability. However, with a limited amount of data it is difficult to determine accurate and representative water quality trends. Since weather patterns and activity in the watershed can change throughout the summer, from year to year, and even from hour to hour during a rain event, it is a good idea to sample the pond at least once per month over the course of the season.

If your monitoring group's sampling events this year were limited due to not having enough time to pick-up or drop-off samples at the lab in Concord, please remember the Lake Sunapee Region Lab is open at Colby Sawyer College in New London. This lab was established to serve the large number of ponds in the greater Lake Sunapee area. This lab is inspected by DES and operates under a DES approved quality assurance plan. We encourage your monitoring group to utilize this lab next summer for all sampling events (except for our annual visit, of course!). To find out more about the lab, and to schedule dates to pick up bottles and equipment, please call Bonnie Lewis, the lab manager, at (603) 526-3486.

We would like to encourage your monitoring group to formally participate in the DES Weed Watchers program, a volunteer program dedicated to monitoring the lakes and ponds for the presence of exotic aquatic plants. This program only involves a small amount of time during the summer months. Volunteers survey their waterbody once a month from **June** through **September**. To survey, volunteers slowly

boat, or even snorkel, around the perimeter of the waterbody and any islands it may contain. Using the materials provided in the Weed Watchers Kit, volunteers look for any species that are of suspicion. After a trip or two around the waterbody, volunteers will have a good knowledge of its plant community and will immediately notice even the most subtle changes. If a suspicious plant is found, the volunteers will send a specimen to DES for identification. If the plant specimen is an exotic, a biologist will visit the site to determine the extent of the problem and to formulate a plan of action to control the nuisance infestation. Remember that early detection is the key to controlling the spread of exotic plants.

If you would like to help protect your lake or pond from exotic plants, contact Amy Smagula, Exotic Species Program Coordinator, at 271-2248 or visit the Weed Watchers web page at www.des.state.nh.us/wmb/exoticspecies/survey.htm.

FIGURE INTERPRETATION

Figure 1 and Table 1: The graphs in Figure 1 (Appendix A) show the historical and current year chlorophyll-a concentration in the water column. Table 1 (Appendix B) lists the maximum, minimum, and mean concentration for each sampling season that the pond has been monitored through the program.

Chlorophyll-a, a pigment found in plants, is an indicator of the algal abundance. Because algae are usually microscopic plants that contain chlorophyll-a, and are naturally found in lake ecosystems, the chlorophyll-a concentration measured in the water gives an estimation of the algal concentration or lake productivity. The median summer chlorophyll-a concentration for New Hampshire's lakes and ponds is 4.58 mg/m³.

The current year data (the top graph) show that the chlorophyll-a concentration on the **July** sampling event was **slightly greater than** the state median and was **slightly less than** the similar lake median (refer to Appendix F for more information about the similar lake median).

Overall, visual inspection of the historical data trend line (the bottom graph) shows a **relatively stable** and **low** in-lake chlorophyll-a trend, except for the **July 2005** chlorophyll concentration which was the **highest** reading that has been measured since monitoring began.

Please keep in mind that this trend is based on limited data at the pond has typically been sampled once per summer. As your group expands its sampling program to include additional events each year, we will be able to determine trends with more accuracy and confidence.

In the 2006 annual report, since your group will have sampled the chlorophyll-a concentration at the deep spot for at least 10 consecutive years, we will conduct a statistical analysis of the historic data to determine if there has been a significant change in the annual mean since monitoring began.

While algae are naturally present in all ponds, an excessive or increasing amount of any type is not welcomed. In freshwater ponds, phosphorus is the nutrient that algae depend upon for growth. Algal concentrations may increase with an increase in nonpoint sources of phosphorus loading from the watershed, or in-lake sources of phosphorus loading (such as phosphorus releases from the sediments). Therefore, it is extremely important for volunteer monitors to continually educate residents about how activities within the watershed can affect phosphorus loading and pond quality.

Figure 2 and Table 3: The graphs in Figure 2 (Appendix A) show historical and current year data for pond transparency. Table 3 (Appendix B) lists the maximum, minimum and mean transparency data for each sampling season that the pond has been monitored through the program.

Volunteer monitors use the Secchi-disk, a 20 cm disk with alternating black and white quadrants, to measure water clarity (how far a person can see into the water). Transparency, a measure of water clarity, can be affected by the amount of algae and sediment from erosion, as well as the natural colors of the water. The median summer transparency for New Hampshire's lakes and ponds is 3.2 meters.

The current year data (the top graph) show that the in-lake transparency on the **July** sampling event was **much greater than** the state median and similar lake median (refer to Appendix F for more information about the similar lake median).

Overall, visual inspection of the historical data trend line (the bottom graph) shows a *fluctuating*, *but overall stable*, transparency trend since monitoring began. Specifically, the transparency has *fluctuated between approximately 4.5 and 6.3 meters* since 1991.

Again, please keep in mind that this trend is based on limited data. As your group expands its sampling program to include additional events each year, we will be able to determine trends with more accuracy and confidence.

As previously discussed, since your group will have sampled the transparency at the deep spot for at least 10 consecutive years, the 2006 annual report will include a statistical analysis of the historic data to determine if there has been a significant change in the annual mean since monitoring began.

Typically, high intensity rainfall causes erosion of sediments into ponds and streams, thus decreasing clarity. Efforts should continually be made to stabilize stream banks, pond shorelines, disturbed soils within the watershed, and especially dirt roads located immediately adjacent to the edge of tributaries and the pond. Guides to Best Management Practices designed to reduce, and possibly even eliminate, nonpoint source pollutants, such as sediment loading, are available from DES upon request.

Figure 3 and Table 8: The graphs in Figure 3 (Appendix A) show the amount of phosphorus in the epilimnion (the upper layer) and the hypolimnion (the lower layer); the inset graphs show current year data. Table 8 (Appendix B) lists the annual maximum, minimum, and median concentration for each deep spot layer and each tributary since the pond has joined the program.

Phosphorus is the limiting nutrient for plant and algae growth in New Hampshire's freshwater lakes and ponds. Too much phosphorus in a pond can lead to increases in plant and algal growth over time. The median summer total phosphorus concentration in the epilimnion (upper layer) of New Hampshire's lakes and ponds is 12 ug/L. The median summer phosphorus concentration in the hypolimnion (lower layer) is 14 ug/L.

The current year data for the epilimnion and the hypolimnion show that the phosphorus concentration on the **July** sampling event was **much less than** the state median and similar lake median.

Overall, visual inspection of the historical data trend line for the epilimnion and hypolimnion shows a *fluctuating*, *but overall stable* and relatively low, phosphorus trend since monitoring began in 1991.

One of the most important approaches to reducing phosphorus loading to a waterbody is to continually educate watershed residents about its sources and how excessive amounts can adversely impact the ecology and value of lakes and ponds. Phosphorus sources within a lake or pond's watershed typically include septic systems, animal waste, lawn fertilizer, road and construction erosion, and natural wetlands.

TABLE INTERPRETATION

> Table 2: Phytoplankton

Table 2 (Appendix B) lists the current and historical phytoplankton species observed in the pond. Specifically, this table lists the three most dominant phytoplankton species observed in the sample and their relative abundance in the sample.

Due to an equipment problem, a phytoplankton sample was not collected on the annual biologist visit in July.

Typically, **golden-brown algae** and **diatoms** are the dominant phytoplankton species in the pond in **July** and **August.**

Phytoplankton populations undergo a natural succession during the growing season (Please refer to the "Biological Monitoring Parameters" section of this report for a more detailed explanation regarding seasonal plankton succession). Diatoms and golden-brown algae are typical in New Hampshire's less productive lakes and ponds.

> Table 4: pH

Table 4 (Appendix B) presents the in-lake and tributary current year and historical pH data.

pH is measured on a logarithmic scale of 0 (acidic) to 14 (basic). pH is important to the survival and reproduction of fish and other aquatic life. A pH below 6.0 limits the growth and reproduction of fish. A pH between 6.0 and 7.0 is ideal for fish. The median pH value for the epilimnion (upper layer) in New Hampshire's lakes and ponds is **6.6**, which indicates that the surface waters in the state are slightly acidic. For a more detailed explanation regarding pH, please refer to the "Chemical Monitoring Parameters" section of this report.

The pH at the deep spot on the July ranged from **5.83** in the hypolimnion to **5.94** in the epilimnion, which means that the water is *acidic*.

It is important to point out that the pH in the hypolimnion (lower layer) was *lower (more acidic)* than in the epilimnion (upper layer). This increase in acidity near the lake bottom is likely due the decomposition of organic matter and the release of acidic by-products into the water column.

Due to the presence of granite bedrock in the state and acid deposition (from snowmelt, rainfall, and atmospheric particulates) in New Hampshire, there is not much that can be done to effectively increase pond pH.

> Table 5: Acid Neutralizing Capacity

Table 5 (Appendix B) presents the current year and historical epilimnetic ANC for each year the pond has been monitored through VLAP.

Buffering capacity (ANC) describes the ability of a solution to resist changes in pH by neutralizing the acidic input. The median ANC value for New Hampshire's lakes and ponds is **4.9 mg/L**, which indicates that many lakes and ponds in the state are at least "moderately vulnerable" to acidic inputs. For a more detailed explanation, please refer to the "Chemical Monitoring Parameters" section of this report.

The mean Acid Neutralizing Capacity (ANC) of the epilimnion (the upper layer) was **1.4 mg/L** this season, which is **much less than** the state median. In addition, this indicates that the pond is **extremely vulnerable** to acidic inputs (such as acid precipitation).

> Table 6: Conductivity

Table 6 (Appendix B) presents the current and historical conductivity values for tributaries and in-lake data. Conductivity is the numerical expression of the ability of water to carry an electric current (which is determined by the number of negatively charged ions from metals, salts, and minerals in the water column). The median conductivity value for New Hampshire's lakes and ponds is **40.0 uMhos/cm**. For a more detailed explanation, please refer to the "Chemical Monitoring Parameters" section of this report.

The conductivity in the epilimnion at the deep spot on the **July** sampling event was **16.35 uMhos/cm**, which is *much less than* the state median.

The in-lake conductivity has **very gradually decreased** in the pond, inlet, and outlet since monitoring began. Increases in conductivity typically indicate the influence of human activities on surface water quality. Septic system leachate, agricultural runoff, iron deposits, and road runoff (which typically contains road salt during the spring snow melt), can each influence conductivity readings. This **decreasing** trend in conductivity suggests the reduction of pollutants and erosion in the watershed. We hope that this trend continues!

> Table 8: Total Phosphorus

Table 8 (Appendix B) presents the current year and historical total phosphorus data for in-lake and tributary stations. Phosphorus is the nutrient that limits the algae's ability to grow and reproduce. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

The phosphorus concentration in the **inlets** was **relatively low** this season, which is good news. However, we recommend that your monitoring group sample the major tributaries to the pond soon after snow-melt and periodically during rain storms to determine if the phosphorus concentration is **elevated** in the tributaries during these times. Typically, the majority of nutrient loading to a pond occurs in the spring during snowmelt and during intense rain storms that cause surface runoff and erosion within the watershed.

For a detailed explanation on how to conduct rain event sampling please refer to the 2002 VLAP Annual Report "Special Topic Article" or contact the VLAP Coordinator.

> Table 9 and Table 10: Dissolved Oxygen and Temperature Data

Table 9 (Appendix B) shows the dissolved oxygen/temperature profile(s) for the 2005 sampling season. Table 10 (Appendix B) shows the historical and current year dissolved oxygen concentration in the hypolimnion (lower layer). The presence of dissolved oxygen is vital to fish and amphibians in the water column and also to bottom-dwelling organisms. Please refer to the "Chemical Monitoring Parameters" section of this report for a more detailed explanation.

The dissolved oxygen concentration was **high** at all depths sampled at the deep spot of the pond on the **July** sampling event. Typically, shallow lakes and ponds that are not deep enough to stratify into more than one or two thermal layers will have relatively high amounts of oxygen at all depths. This is due to continual lake mixing and diffusion of oxygen into the bottom waters induced by wind and wave action.

> Table 11: Turbidity

Table 11 (Appendix B) lists the current year and historical data for inlake and tributary turbidity. Turbidity in the water is caused by suspended matter, such as clay, silt, and algae. Water clarity is strongly influenced by turbidity. Please refer to the "Other Monitoring Parameters" section of this report for a more detailed explanation.

The tributary and deep spot turbidity was **relatively low** this season which suggests that erosion may not be a major contributor of sediment and nutrient loading to the pond. This is good news and we hope to see this trend continue.

> Table 12: Bacteria (E.coli)

Table 12 lists the current year and historical data for bacteria (E.coli) testing. (Please note that Table 12 now lists the maximum and minimum results for this season and for all past sampling seasons.) E. coli is a normal bacterium found in the large intestine of humans and other warm-blooded animals. E.coli is used as an indicator organism because it is easily cultured and its presence in the water, in defined amounts, indicates that sewage MAY be present. If sewage is present in the water, potentially harmful disease-causing organisms MAY also be present.

The *E. coli* concentration at **Cole Pond Beach** was **very low** (less than 2 counts per 100 mL of sample) on the July sampling event.

If you are concerned about bacteria levels at this beach, you may want to repeat this test next season on a weekend during heavy beach use or after a rain event. Since *E.coli* die quickly in cool pond waters, testing is most accurate and most representative of the health risk to bathers when the source (humans, animals, or waterfowl) is present.

> Table 14: Current Year Biological and Chemical Raw Data

This table lists the most current sampling season results. Since the maximum, minimum, and annual mean values for each parameter are not shown on this table, this table displays the current year "raw" (meaning unprocessed) data. The results are sorted by station, depth zone (epilimnion, metalimnion, and hypolimnion) and parameter.

> Table 15: Station Table

As of the Spring of 2004, all historical and current year VLAP data are included in the DES Environmental Monitoring Database (EMD). To facilitate the transfer of VLAP data into the EMD, a new station identification system had to be developed. While volunteer monitoring groups can still use the sampling station names that they have used in the past (and are most familiar with), an EMD station name also exists for each VLAP sampling location. For each station sampled at your pond, Table 15 identifies what EMD station name corresponds to the station names you have used in the past and will continue to use in the future.

DATA QUALITY ASSURANCE AND CONTROL

Annual Assessment Audit:

During the annual visit to your pond, the biologist conducted a "Sampling Procedures Assessment Audit" for your monitoring group. Specifically, the biologist observed the performance of your monitoring group while sampling and filled out an assessment audit sheet to document the ability of the volunteer monitors to follow the proper field sampling procedures (as outlined in the VLAP Monitor's Field Manual). This assessment is used to identify any aspects of sample collection in which volunteer monitors fail to follow proper procedures, and also provides an opportunity for the biologist to retrain the volunteer monitors as necessary. This will ultimately ensure that the samples that the volunteer monitors collect are truly representative of actual lake and tributary conditions.

Overall, your monitoring group performed **very well** while collecting samples on the annual biologist visit this season! Specifically, the members of your monitoring group followed the majority of the proper field sampling procedures. The biologist did identify one aspect regarding sample collection that the volunteer monitors could improve upon, as follows:

> Anchoring at deep spot: Please remember to use an anchor with sufficient weight and sufficient amount of rope to prevent the boat from drifting while sampling at the deep spot. It is difficult for the biologist to collect an accurate and representative dissolved oxygen/temperature profile when the boat is drifting. In addition, it is difficult to view the Secchi disk and collect samples from the proper depths when the boat is drifting. Depending on the depth of the pond and the wind conditions, it may be necessary to use two anchors!

USEFUL RESOURCES

Acid Deposition Impacting New Hampshire's Ecosystems, NHDES Fact Sheet ARD-32, (603) 271-2975 or www.des.state.nh.us/factsheets/ard/ard-32.htm.

Best Management Practices to Control Nonpoint Source Pollution: A Guide for Citizens and Town Officials, NHDES Booklet WD-03-42, (603) 271-2975.

Biodegradable Soaps and Water Quality, NHDES Fact Sheet BB-54, (603) 271-2975 or www.des.state.nh.us/factsheets/bb/bb-54.htm.

Canada Geese Facts and Management Options, NHDES Fact Sheet BB-53, (603) 271-2975 or www.des.state.nh.us/factsheets/bb/bb-53.htm.

Cyanobacteria in New Hampshire Waters Potential Dangers of Blue-Green Algae Blooms, NHDES Fact Sheet WMB-10, (603) 271-2975 or www.des.state.nh.us/factsheets/wmb/wmb-10.htm.

IPM: An Alternative to Pesticides, NHDES Fact Sheet WD-SP-3, (603) 271-2975 or www.des.state.nh.us/factsheets/sp/sp-3.htm.

Lake Protection Tips: Some Do's and Don'ts for Maintaining Healthy Lakes, NHDES Fact Sheet WD-BB-9, (603) 271-2975 or www.des.state.nh.us/factsheets/bb/bb-9.htm.

Low Impact Development: Taking Steps to Protect New Hampshire's Surface Waters NHDES Fact Sheet WD-WMB-16, (603) 271-2975 or www.des.state.nh.us/factsheets/wmb/wmb-17.htm.

Proper Lawn Care In the Protected Shoreland, The Comprehensive Shoreland Protection Act, NHDES Fact Sheet WD-SP-2, (603) 271-2975 or www.des.state.nh.us/factsheets/sp/sp-2.htm.

Sand Dumping - Beach Construction, NHDES Fact Sheet WD-BB-15, (603) 271-2975 or www.des.state.nh.us/factsheets/bb/bb-15.htm.

Through the Looking Glass: A Field Guide to Aquatic Plants, North American Lake Management Society, 1988, (608) 233-2836 or www.nalms.org.

Weed Watchers: An Association to Halt the Spread of Exotic Aquatic Plants, NHDES Fact Sheet WD-BB-4, (603) 271-2975 or www.des.state.nh.us/factsheets/bb/bb-4.htm.

Watershed Districts and Ordinances, NHDES Fact Sheet WD-WMB-16, (603) 271-2975 or www.des.state.nh.us/factsheets/wmb/wmb-16.htm.